Bioindicator methods for monitoring of nitrogen impacts on statutory nature conservation sites

Mark Sutton, Carole Pitcairn, Ian Leith, Netty van Dijk, Lucy Sheppard, Sim Tang, Simon Smart, Ruth Mitchell, David Fowler
Centre for Ecology and Hydrology
Pat Wolsely and Peter James
Natural History Museum

JNCC, EN, SNH, CCW, EHS, SEPA
Assessing air pollution impacts: Critical loads & Bioindicators

- Critical loads & critical levels approaches
 - Mostly national, but can be site-based.
 - Essentially only a risk assessment.
 “Likelihood of change”

- Bioindicators & biomonitoring:
 - Actual measurement of ecosystem parameters
 - Relates directly to site “condition”
 - Can consider temporal changes at a site level
Uncertainties and needs

- Wide range of different views regarding the usefulness of bioindicators & biomonitoring for N.
- Potentially attractive for Agencies to help monitor site condition in relation to air pollution impacts and for local assessments
- Uncertainty regarding the specific benefits and limitations of the different methods.
- Need research…
JNCC & Agencies Research Project

- **Stage 1:**
 - Review existing methods
 - Test novel techniques at one site
 - Identify methods with high potential for further application by Agencies

- **Stage 2:**
 - Further test the practical application of methods recommended for application
 - Use 4 key sites for detailed methods (NH$_3$, NO$_x$, wet deposition and controlled dose comparison)
 - Simplest methods to be then applied at UK scale.
Definitions

- Can get easily hung up on definitions – keep it simple here

- **Bioindicators:**
 - General group of approaches where biological measurement used to indicate something (e.g. might be applied at one time for spatial comparison).

- **Biomonitoring:**
 - Repeated application of bioindicator methods over time (e.g. weeks to decades)
N bioindicators: What is being indicated?

• Several purposes for N bioindicators to estimate:
 – N deposition fluxes from the atmosphere
 – Air concentrations of N species (NO$_x$, NH$_3$ etc)
 – Environmental effects of N, including physiological and environmental changes

• Should consider biomonitoring in conjunction with physical monitoring

• Can use biomonitoring results as input for local application of the critical loads approach.
Types of N bioindicator methods

Biochemical methods
– Measure the accumulation of N or a chemical/physiological response in a plant/soil component

Species composition methods
– Record the presence of certain species previously categorized according to their N preferences and generate an overall site index

Transplant methods
– Locally occurring or standardized plants are exposed to a range of N conditions and their responses assessed.
Biochemical bio-indicator methods for nitrogen
Foliar tissue N

- Most extensively studied parameter
- Response to N deposition rather than concentrations
- Uncertainties in the past particularly related to need to standardize protocols and have robust reference estimates of N deposition.
Total foliar tissue N

Results near a farm at Earlston in Scotland
Spatial variability of foliar N

Results from Leende Heide, the Netherlands
Foliar amino acids

- Large rates of accumulation
- But amino acids accumulated different between species
“Substrate N” and foliar ammonium

Substrate Nitrogen
 – Total available N for growth expected to vary more than total N.
 – Approximate substrate N by measuring total soluble N in leaves.
 – More general than amino acids

Foliar ammonium
 – Foliar ammonium represents primary pool for N compound synthesis and recycling
 – Smaller pool expected to have larger response
Foliar ammonium

- Best results so far for bryophytes
- Species differences consistent with N habitat preferences
- Massive response of factor 20 over range tested.
Response of different foliar N pools

- Larger response from the smaller pool size
- Smaller pools may also respond more quickly to change in N deposition
- Foliar ammonium potentially easier to measure
Combining Bioindicators with the Critical loads approach

- Currently feasible for foliar N and foliar ammonium
- Measured biomonitor data indicates whether a site is significantly above or below the critical load
Estimating N deposition based on foliar ammonium

- Bryophytes in woodland ground flora
- Needed for more data in clean conditions to improve confidence limits

\[N_{dep} = 1.5106 (\text{TissueNH}_4^+)^{0.7398} \]

\[R^2 = 0.9221 \]
Biochemical bioindicators of plant N responses

- Response parameters include enzyme activities, soil emissions and bioassays of damage e.g. tests of frost hardiness or photosynthetic activity.
- Methods relevant to assess ecological impacts and for monitoring of general ‘condition’
- But less direct than accumulation methods and more affected by other factors, so generally less well suited to assess N deposition.
Species composition bio-indicator methods for nitrogen
Ellenberg Approach for Higher Plants and Bryophytes

- Demonstrated close relationship to N deposition
- But species composition affected by many other factors, especially soil, management & light effects.
- Suited to local scale assessments and long term biomonitoring
Lichens for assessing impact of atmospheric nitrogen

• Tested:
 – several overall biodiversity measures
 – Several N indicator methods inc.
 • Ellenberg (Wirth) values
 • French (Lallmont) scale
 • Van Herk (Acidophyte / Nitrophyte classification)
 • Compared Twigs and Trunks
 • Also assessed bark pH

• Some suggestion: Lichens are particularly responding to NH$_3$. Effects of NH$_4^+$ and NO$_y$ are much less certain.

• Effect of NH$_3$ to *increase* bark pH is critical
Total Lichen biodiversity and bark pH

![Graph of Lichen Diversity](image)

- **VDI** - German, **LDV** - European

![Graph of Bark and Twig pH](image)

- Bark pH
- twig pH
Sensitivity of lichens to NH$_3$

Acidophytes (AIW) hate NH$_3$

“Troll’s Beard” (Bryoria): disappearing from many sites

Nitrophytes (NIW) love NH$_3$

Cladonia

Xanthoria

thrives by farms
Combination of Acidophytes and Nitrophytes
Ellenberg (Wirth): detailed and potential simpler system

![Graph showing Lichen Mean Ellenberg Score vs. NH3 concentration (ug m⁻³)]

- Parameter: Twigs (chk)
- Parameter: Trunks

![Graph showing Ellenberg: Easy Spp Only! vs. NH3 concentration (ug m⁻³)]

- Parameter: Twigs
- Parameter: Trunks
Twig acidophytes are completely excluded above a trunk pH of 4-4.2. This equates to an NH$_3$ conc of around 2 ug m$^{-3}$.

Note outlier for Thetford trunks: rich Parmelion community (not in AIW)
Potential for two-tier Lichen approach for Nitrogen

- **Detailed method:** further develop van Herk approach, including application to twigs. Good for full site assessment by experts.
- **Simpler method:** refine simple Ellenberg approach, including application to twigs. Good for application by trained non experts to get indications at sites and for raising public awareness.
Transplant bio-indicator methods for nitrogen
Native reciprocal transplants

- Works best for bryophytes – no soil attached and more robust than lichens
- Need two or more locations with similar climate
- Measure growth rates, and N content
- Observe reduced performance in polluted conditions or recovery in clean conditions
- Good for demonstration to stakeholders to show the benefits of emission abatement at a site level.
Grass biomonitors

- Lolium perenne using EUROBIONET wicking system

\[y = -0.0036x + 2.0921 \]

\[R^2 = 0.7777 \]
Grass biomonitors

L. perenne Biomass

\[y = -0.004x + 2.1829 \]

\[R^2 = 0.8674 \]

NH\(_3\) Concentration (µg m\(^{-3}\))
Biomass (g)

L. perenne above ground %N concentration

\[y = 0.1768 \ln(x) + 3.03 \]

\[R^2 = 0.5403 \]

Log NH\(_3\) concentration (µg m\(^{-3}\))
Grass biomonitors

L. perenne: Mean mg N per pot

$y = -0.1677x + 77.129$

$R^2 = 0.984$

Mean mg N per pot

Distance from poultry farm (m)

L. perenne: Mean mg N per pot

$y = 11.94\ln(x) + 39.662$

$R^2 = 0.9352$

Mean mg N per pot

Log Ambient NH$_3$ concentration μg m$^{-3}$
Overview of methods tested and recommendations

- Foliar N conc.
- Enzyme Activity
- Foliar N:P ratio
- Lichen diversity
- Lichens (Lallemont)
- Lichen (Simplified Ellenberg)
- Native transplant
- Frost hardness
- Soil gas fluxes (N2O, NO)
- N isotope analysis
- Chlor fluorescence
- Soil invertebrates

How good/robust? (score)

How easy? (score)
Classification of method types and recommendation for further development

• Chemical Methods
 – Total foliar N
 – Soluble foliar N/NH$_4^+$
 – Bark pH

• Diversity Methods
 – Ellenberg scale (Higher plants and bryophytes)
 – Van Kerk scale for lichens (inc for twigs)
 – Ellenberg (Wirth) scale for lichens (inc for twigs)

• Transplant Methods
 – Standardized grass transplants
 – (Native reciprocal transplants)
Conclusions

- Methods refer to different timescales – This affects the translation from bioindicating to biomonitoring.
- The methods by definition refer to an ecosystem or biological impact – therefore they give a direct implication of critical load / level exceedance.
- The accumulation methods most quantitatively related to atmospheric deposition, but different different deposition components may have different effects.
- For application to statutory nature conservation sites the bioindicators can be best used for local sources with small scale transects into reserves (NO\textsubscript{x} and NH\textsubscript{3} as sources).
Conclusions and next steps

- The assessment for elevated wet deposition is much less certain (due to linked altitude effects).
- The most robust assessments would use more than one method in parallel and complement physical monitoring efforts.
- Ongoing work is focusing at 4 sites for detailed methods, plus UK wide survey of simple methods.
- Contributors are invited across the Agencies to try out the simple methods next year.