Empirical critical loads for nitrogen deposition - a review of their current status

Mike Ashmore, University of Bradford
Empirical critical loads for nitrogen

• Critical load - deposition below which long-term harmful effects on ecosystem function or structure do not occur according to current knowledge

• Set by calculation of long-term ecosystem budgets (steady-state mass balance) or with reference to observed or experimentally-induced changes in ecosystems (empirical approach)
Evidence for empirical critical loads

- Field observations - but attribution of cause and effect is problematic
- Field manipulation experiments - but may not be of long-enough duration to detect effects except at highest deposition rates
- Considerable value judgement and uncertainties in interpreting the evidence
- Values set as range with indication of strength of supporting evidence
Revision of Empirical Critical loads

UNECE Workshop
Revised empirical critical loads for nitrogen, Berne, 11-13 November 2002
Linked to revision of Gothenburg Protocol

UK revision of mapping values
Adapting Berne recommendations for UK in terms of both mapping communities and assigning appropriate critical values
Berne outcomes

• Use of EUNIS categories - improved link to mapping?
• Identifying new communities for which CLs can be assigned - e.g. sand dunes, Racomitrium heath
• Modifying current critical load range (e.g. calcareous grassland, lowland heath)
• Changes in reliability of estimates
• Review of modifying factors and their effects

For forests, critical loads based on response (e.g. nitrate leaching, nutrient imbalance, ground flora, epiphytes)
Application in UK - mapping

- Mapping linked to revision of acidity critical loads
- EUNIS categories cross-linked to Biodiversity Action Plan broad habitats
- Distribution map based on combination of land-cover map, species and community maps, and soils maps as appropriate
- Some value judgement - does map look right?

Report and maps available at:
http://critloads.ceh.ac.uk/reports.htm
Application in UK - critical loads

Principles agreed to guide UK values

• No mapping values adopted for ‘expert judgement’ values except where UK evidence exists (moorlands)

• Middle of range from Berne selected as default

• Modified from mid-range when substantial body of relevant UK evidence exists (heathlands)

• Modified from mid-range with evidence that UK systems are more or less sensitive (bogs)
Implications of revisions

• Greater range of UK habitats with empirical critical loads assigned
• Reduction in UK mapping values for grasslands and lowland heath
• Greater degree of exceedance shown in UK maps
• Need to understand scientific basis of changes in critical loads (new evidence or new interpretation?)
Previous and Revised Empirical Critical Loads for Nitrogen (kg ha\(^{-1}\) yr\(^{-1}\)) for Non-Forest Ecosystems in UK

<table>
<thead>
<tr>
<th>(a) Ecosystem</th>
<th>(b) 2000 UK mapping value</th>
<th>(c) Critical load range in 1996 Mapping Manual</th>
<th>(d) Critical load range from Berne workshop</th>
<th>(e) Revised UK mapping value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasslands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry acid and neutral closed grassland</td>
<td>25</td>
<td>20-30#</td>
<td>10-20#</td>
<td>15</td>
</tr>
<tr>
<td>Calcareous grasland</td>
<td>25</td>
<td>15-35#</td>
<td>15-25#</td>
<td>20</td>
</tr>
<tr>
<td>Montane grassland</td>
<td>12</td>
<td>10-15(#)</td>
<td>10-20#</td>
<td>15</td>
</tr>
<tr>
<td>Moist/wet oligotrophic grass</td>
<td></td>
<td></td>
<td>10-20#</td>
<td>15</td>
</tr>
<tr>
<td>Nardus stricta swards</td>
<td></td>
<td></td>
<td>10-20#</td>
<td>15</td>
</tr>
<tr>
<td>Moss/lichen mountain summits</td>
<td></td>
<td></td>
<td>5-10#</td>
<td>7</td>
</tr>
<tr>
<td>(a) Ecosystem</td>
<td>(b) 2000 UK mapping value</td>
<td>(c) Critical load range in 1996 Mapping Manual</td>
<td>(d) Critical load range from Berne workshop</td>
<td>(e) Revised UK mapping value</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Heathland/moorland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowland dry heaths</td>
<td>17</td>
<td>15-20 (#)</td>
<td>10-20 (#)</td>
<td>12</td>
</tr>
<tr>
<td>Lowland wet heaths</td>
<td></td>
<td>17-22 (#)</td>
<td>10-25 (#)</td>
<td>15</td>
</tr>
<tr>
<td>Upland Calluna heaths</td>
<td>15</td>
<td>10-20 (#)</td>
<td>10-20 (#)</td>
<td>15</td>
</tr>
<tr>
<td>Arctic/alpine heaths</td>
<td>7.5</td>
<td>5-15 (##)</td>
<td>5-15 (##)</td>
<td>-</td>
</tr>
<tr>
<td>Coastal habitats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal stable dune grasslands</td>
<td></td>
<td>20-30 (#)</td>
<td>10-20 (#)</td>
<td>15</td>
</tr>
<tr>
<td>Shifting coastal dunes</td>
<td></td>
<td>10-20 (#)</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Bogs, mires and fens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ombrotrophic and raised bogs</td>
<td>10</td>
<td>5-10 (#)</td>
<td>5-10 ##</td>
<td>10</td>
</tr>
<tr>
<td>Poor fens</td>
<td></td>
<td>10-20 (#)</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Exceedance of 5th-percentile nutrient nitrogen critical loads

Figure 1.2

Previous (February 2001)

Update (February 2003)

kg N ha\(^{-1}\) year\(^{-1}\)

- Not exceeded
- 0.0 – 7.0
- 7.0 – 14.0
- 14 - 28
- > 28
Critical loads for sensitive ecosystems are exceeded over significant areas of the UK.

But what evidence is there that current N deposition is significantly affecting species composition?
Field data

• National vegetation survey (CVS) - species composition change over last 20 years is associated with reduced N deposition

• National lichen database - expansion of nitrophytic species (e.g. *Xanthoria polycarpa*) associated with higher rates of N deposition

• Grassland species diversity negatively related to N deposition
CVS: Large-scale signal of N deposition in vegetation change between 1990–’98

Response variable = cover-weighted Ellenberg fertility score

Small amount of explained variance but signal detectable.

NHx implicated rather than NOy.

Sheep grazing an important additional driver in uplands

a) Heath and Bog

- Between-square explained: 83.7%
- Between-square unexplained: 14.7%
- Within-square unexplained: 1.6%

b) Semi-natural grasslands

- Between-square explained: 87.5%
- Between-square unexplained: 11.8%
- Within-square unexplained: 0.7%
CVS Analysis of indicator species - negative relationships with N deposition dominate in Ellenberg classes 1-3
Xanthoria polycarpa

<table>
<thead>
<tr>
<th></th>
<th>Low SO₂</th>
<th>High SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hectads</td>
<td>241</td>
<td>408</td>
</tr>
<tr>
<td>Abent Hectads</td>
<td>591</td>
<td>510</td>
</tr>
</tbody>
</table>
Xanthoria polycarpa

- Sensitive to SO$_2$
- Nitrophyte

<table>
<thead>
<tr>
<th>Absence v. New</th>
<th>Low SO$_2$</th>
<th>High SO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nitrogen</td>
<td>+++</td>
<td>n.s</td>
</tr>
<tr>
<td>Dry Sox</td>
<td>+++</td>
<td>---</td>
</tr>
<tr>
<td>Dry NOx</td>
<td>+++</td>
<td>---</td>
</tr>
<tr>
<td>Dry NHx</td>
<td>+++</td>
<td>n.s</td>
</tr>
<tr>
<td>Total Ca+Mg</td>
<td>---</td>
<td>n.s</td>
</tr>
<tr>
<td>Total H+</td>
<td>n.s</td>
<td>---</td>
</tr>
</tbody>
</table>

- **Sensitive to SO$_2$**
- **Nitrophyte**

Total Nitrogen

1986

![Graph showing the distribution of Total Nitrogen levels with Absence, Invasion, and Presence under different SO$_2$ levels.]

- **Absence**
- **Invasion**
- **Presence**
Field manipulation review

- Published as JNCC Report no. 331
- Aimed to review new evidence of the scale and nature of impacts of N deposition from field manipulation experiments
- Evaluated issues in design and interpretation of field experiments
- Contributed to revised critical loads
- Identified priorities for future work
Field manipulation – key conclusions

• Consistency in responses between experiments – e.g. UK heaths and moors
• Rapid changes in indicator parameters (e.g. N content) but major changes in higher plant species composition only after 10 years or more
• Importance of interactions with P and management
• Sensitivity of lichens and bryophytes
• Site deposition history important for interpretation
• Results overall suggest cause for concern on impacts of N deposition on sensitive UK sites
Synthesising experimental results: soil C:N and foliar N responses at three heathland sites.
Species change: calcareous grassland

Total grass

- **Festuca ovina**
 - 0N: a
 - 3.5N: a
 - 14N: b

- **Carex flacca**
 - 0N: a
 - 3.5N: a
 - 14N: a

- **Thymus polytrichus**
 - 0N: a
 - 3.5N: ab
 - 14N: c

Total sedge

- **Festuca ovina**
 - 0N: a
 - 3.5N: a
 - 14N: a

Total forbs

- **Festuca ovina**
 - 0N: a
 - 3.5N: ab
 - 14N: c

- **Carex flacca**
 - 0N: a
 - 3.5N: a
 - 14N: a

- **Thymus polytrichus**
 - 0N: a
 - 3.5N: ab
 - 14N: c
Field manipulation – future priorities

• Need to maintain UK long-term experiments
• New experiments needed for sensitive ecosystems
• Need to assess long-term responses to decrease in N deposition
• Assess fate, turnover and long-term significance of N accumulation in soil pools, and interaction with P availability
• More focus on responses of lichens/bryophytes, directly and indirectly (cover/substrate chemistry)
• More use of modelling for interpretation and prediction
Use of modelling

• Models allow long-term implications of experimental results to be assessed
• Models allow the modifying effects of some factors to be evaluated
• Models demonstrate that interactions with management are of critical importance in heathlands and moorlands
• Dynamic models confirm long time scales (decades) for vegetation change and for recovery
From detecting a signal to predicting the future?

- N deposition can influence UK species composition
- Vegetation change may reflect long-term N accumulation not current N deposition
- Responses to decreased emissions uncertain
- Many research needs to provide improved prediction, but integration of field studies, experiments and modelling is crucial
- Critical loads are a crude tool for national-scale risk assessment, and have no predictive value
Critical loads- key future issues

• More experimental and field evidence
• Better tools to assess implications of exceedance
• Estimating N deposition – need consistency between experiments, field surveys and models
• Management - implications for critical load values and dynamics of response
• Differential effects of reduced and oxidised N
• Modifying factors such as P status and rainfall
• Predicting responses to decreased N deposition
Local-scale application?

- Empirical critical loads developed for use in national and international risk assessment
- UK mapping values designed for national screening of levels of risk but are not appropriate for application to specific sites
- Refer to Berne workshop – more detail of appropriate value for a wider range of habitats

MAJOR ERRORS OF JUDGEMENT WILL ARISE IF UK MAPPING VALUES ARE APPLIED UNCRITICALLY IN LOCAL SITE ASSESSMENTS
Acknowledgements

• For critical loads and exceedance maps: CEH Monks Wood (http://critloads.ceh.ac.uk) and CEH Edinburgh
• For CVS analysis results: Simon Smart (CEH Merlewood)
• For lichen database results: Alistair Headley (Bradford University) and British Lichen Society
• For experimental data on heathlands: Sally Power (Imperial College) and Simon Caporn (Manchester Metropolitan University)
• For experimental data on grasslands: Gareth Phoenix and Paul Horswill (University of Sheffield)